

描述

AT8870是一款刷式直流电机驱动器,适用于打印机、电器、工业设备以及其他小型机器。两个逻辑输入控制H桥驱动器,该驱动器由四个N-MOS组成,能够以高达3.6A的峰值电流双向控制电机。利用电流衰减模式,可通过对输入进行脉宽调制(PWM)来控制电机转速。如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。

AT8870集成电流限制功能,该功能基于模拟输入VREF 以及 ISEN 引脚的电压。该器件能够将电流限制在某一已知水平,这 可显著降低系统功耗要求,并且无需大容量电容来维持稳定电压,尤其是在电机启动和停转时。

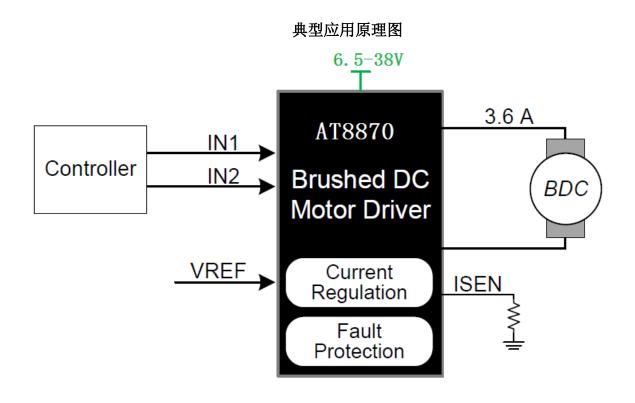
内部关断功能包含过流保护,短路保护,欠压锁定和过温保护。 AT8870提供一种带有裸露焊盘的SOP-8封装,能有效改善散热 性能,且是无铅产品,引脚框采用100%无锡电镀。

应用

- 打印机及办公自动化设备
- 电器
- 机器人
- 工业设备

型号选择

产品型号	封装	包装
AT8870	SOP8-PP	料管,100颗/管;卷带,5k/盘


特点

- ●单通道H桥电流控制电机驱动器
- ●宽电压供电, 6.5V-38V
- ●低RDS(ON)电阻
- ●3.6A峰值驱动输出,2A持续输出能力
- ●PWM电流整流/限流
- 支持低功耗休眠模式
- ●过温关断电路
- ●短路保护
- ●欠压锁定保护
- ●自动故障恢复

封装形式

SOP8 with PAD

版本更新记录

日期	版本	内容
2017.09	V0.1	初始版本

功能结构框图

电路工作极限 at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
功率电源	VM		-0.3 – 40	V
输出峰值电流	I_{PEAK}		±3.6	A
逻辑输入电压	V _{IN}		-0.7 to 7	V
Sense 电压	V _{SENSE}		-0.3 to 0.5	V
工作温度	TA	Range S	-40 to 85	$\mathcal C$
最大结温	T _J (max)		150	\mathcal{C}
储藏温度	Tstg		-55 to 150	$\mathcal C$

推荐工作条件 at Ta = 25℃

		Min	NOM	Max	Unit
功率电源	VM	6.5	-	38	V
连续输出电流	I _{OUT}	0		2	A
峰值输出电流	Іреак	0		3.6	A
逻辑输入电压	V _{IN}	0	-	5.75	V
逻辑输入频率	f_{PWM}	0		100	kHZ
参考电压	VREF	0.5		5	V

⁽¹⁾ 芯片大电流工作时,做好芯片散热。

电特性 at Ta = 25 ℃, VM= 24 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	R SUPPLY		•			•
Ivm	VM 静态工作电流	fPWM < 50 kHz		4	10	mA
I_{VMQ}	VM 休眠电流	IN1=IN2=L		10	20	uA
V _{UVLO}	VM 欠压锁定值	VM rising		6.3	6.5	V
VHYS	VM 欠压迟滞			200		mV
ton	开启时间	VM> V _{UVLO} , and IN1 or IN2 high				
LOGIC	-LEVEL INPUTS		•			•
VIL	逻辑输入低电压			0.5	0.7	V
VIH	逻辑输入高电压		1.5		5.25	V
VHYS	逻辑输入迟滞			0.45		V
IIL	逻辑输入电流_低电平	VIN = 0	-20		20	uA
IIH	逻辑输入电流_高电平	VIN = 3.3 V			100	uA
Rpd	输入内部下拉电阻	Other		100		kΩ
tDEG	输入防抖动延迟			450		ns
tSLEEP	进入 SLEEP 状态延迟			1	1.5	ms
H-BRID	GE FETS		•			
	高侧 FET 导通电阻	I O = 1A, T _J = 25 ℃		200		
RDS(ON)	低侧 FET 导通电阻	I O = 1A, T₁ = 25 °C		150		mΩ
IOFF	输出关断漏电流		-1		1	uA
MOTO	R DRIVER					
t_{oFF}	电流衰减时间	Internal PWM OFF-TIME		28		us
t _R	上升时间	VM =24V, 22Ω to GND, 10% to 90%		180		ns
tF	下降时间	VM =24V, 22Ω to GND, 10% to 90%		150		ns
tdead	死区时间			500		ns
AISEN	ISEN 电流增益			10		V/V
t _{BLANK}	消隐时间			2		us
PROTE	CTION CIRCUITS					
Іоср	过流峰值		4.5	5	6	A

AT8870

单通道刷式直流电机驱动芯片

t _{DEG}	OCP 防抖动延时			1.5		us
tretry	过流重复周期			3		ms
T _{SD}	过温阈值	Die temperature	150	160	180	$^{\circ}$
THYS	过温迟滞			40		$^{\circ}$

Page 6 of 12 09/2017, V0.1

模块功能描述

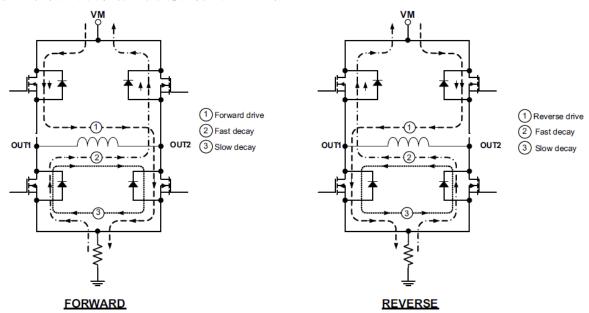
AT8870是一款刷式直流电机驱动器,VM单电源供电,内置电荷泵。两个逻辑输入控制H桥驱动器,该驱动器由四个N-MOS组成,能够以高达3.6A的峰值电流双向控制电机。该芯片利用电流衰减预置最大输出电流,能够将电流限制在某一已知水平。如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。内部关断功能包含过流保护,短路保护,欠压锁定和过温保护。

Bridge Control

输入管脚 IN1、IN2 控制 H 桥的输出状态。下表显示了彼此间的逻辑关系。

IN1	IN2	OUT1	OUT2	说明	
0	0	Z	Z	滑行,休眠	
1	0	Н	L	正向	
0	1	L	Н	反向	
1	1	L	L	刹车	

H 桥控制逻辑表


逻辑输入也可以使用 PWM 控制来达到调速功能。当用 PWM 波控制一个桥臂时,并且在驱动电流为关断时,由于电机的电感特性要求电流连续流通。这个电流叫做续流。为了操作这种电流,H 桥可以操作在两种不同的状态,快衰减或者慢衰减。在快衰减模式,H 桥是被禁止的,续流电流流经体二极管,在慢衰减模式,电机的下臂是短路的。

当 PWM 控制用于快衰模式, PWM 信号控制一个 xIN 管脚, 而另一个管脚维持低电平; 当运用于慢衰减, 另一管脚维持高电平。

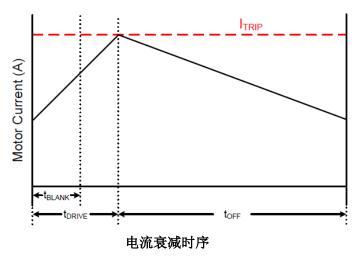
PWM Control of Motor Speed

IN1	IN2	FUNCTION
PWM	0	Forward PWM, fast decay
1	PWM	Forward PWM, slow decay
0	PWM	Reverse PWM, fast decay
PWM	1	Reverse PWM, slow decay

下图显示了在不同驱动和衰减模式下的电流通路。

Drive and Decay Modes

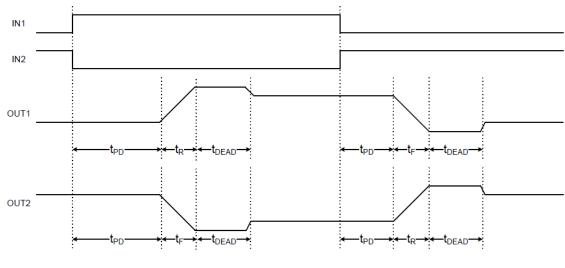
Current Control


通过固定频率的 PWM 电流整流器,流过电机驱动桥臂的电流是被限制的或者是被控制的。在 DC 电机应用中,电流控制功能作用于限制开启电流和停转电流。

当一个 H 桥被使能,流过相应桥臂的电流以一个斜率上升,此斜率由直流电压 VM 和电机的电感特性决定。当电流达到设定的阈值,驱动器会关闭此电流,直到下一个 PWM 循环开始。注意,在电流被使能的那一刻, ISEN 管脚上的电压是被忽略的,经过一个固定时间后,电流检测电路才被使能。这个消隐时间一般固定在 2us。这个消隐时间同时决定了在操作电流衰减时的最小 PWM 时间。

PWM 目标电流是由比较器比较连接在 ISEN 管脚上的电流检测电阻上的电压乘以一个 10 倍因子和一个参考电压决定。参考电压通过 VREF 输入。以下公式为 100%计算目标电流:

$$I_{TRIP} (A) = \frac{VREF(V)}{A_v \times R_{ISEN}(\Omega)} = \frac{VREF(V)}{10 \times R_{ISEN}(\Omega)}$$


举个例子: 假如使用了一个 0.15Ω 的电阻,参考电压为 3.3V,这样目标电流为 2.2A。 注意: 假如电流控制功能不需要使用,ISEN 管脚需直接接地。

当电流达到 ITRIP, H 桥的两个下管打开,维持一个 topf 时间(25us),然后相应上管再打开。

DEAD TIME

当输出由高电平转变成低电平,或者由低电平转变为高电平,死区时间的存在是为了防止上下管同时导通。 死区时间内,输出是一个高阻态。当需要在输出上测量死区时间,需要根据相应管脚当时的电流方向来测量。 如果电流是流出此管脚,此时输出端电压是低于地电平一个二极管压降;如果电流是流入此管脚,此时输出端 电压是高于电源电压 VM 一个二极管压降。

死区时间

休眠模式

当 IN1、IN2 都为低,维持 1ms 以上,器件将进入休眠模式,从而大大降低器件空闲的功耗。进入休眠模式后,器件的 H 桥被禁止,电荷泵电路停止工作。在 VM 上电时候,如果 IN1、IN2 都为低,芯片是立马进去休眠模式。当 IN1 或 IN2 翻转为高电平且至少维持 5us,经过延迟约 50us,芯片恢复到正常的操作状。

保护电路

AT8870 有过流保护,过温保护和欠压保护。

过流保护 (OCP)

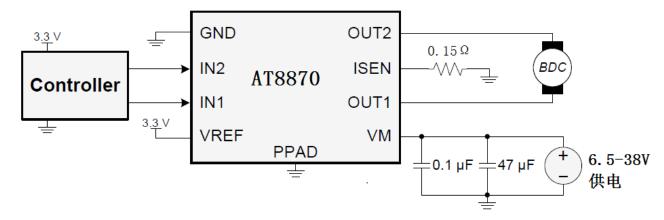
在每一个 FET 上有一个模拟电流限制电路,此电路限制流过 FET 的电流,从而限制门驱动。如果此过流模拟电流维持时间超过 OCP 脉冲时间,H 桥内所有 FET 被禁止。经过一个 OCP 尝试时间(tOCP),驱动器会被重新使能。如果这个错误条件仍然存在,上述这个现象重复出现。如果此错误条件消失了,驱动恢复正常工作。

H 桥上臂和下臂上的过流条件是被独立检测的。对地短路,对 VM 短路,和输出之间短路,都会造成过流关闭。注意,过流保护不使用 PWM 电流控制的电流检测电路,所以过流保护功能不作用与 ISEN 电阻。

过温保护 (TSD)

如果结温超过安全限制阈值, H 桥的 FET 被禁止。一旦结温降到一个安全水平, 所有操作会自动恢复正常。

欠压锁定保护(UVLO)


在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部所有复位。当 VM 上的电压上升到 UVLO 以上,所有功能自动恢复。

电路应用信息

单路刷式 DC 电机控制

限制峰值电流 2.2A。

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VM,应该连接不小于 47uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

一个位于器件下的星状发散的地线覆设,将是一个优化的设计。在覆设的地线下方增加一个铜散热片会更 好的优化电路性能。

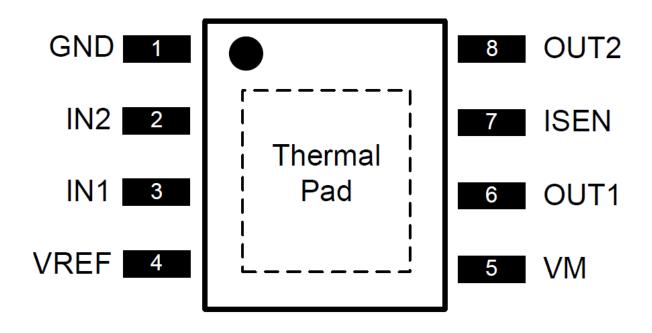
电流取样设置

为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于Rs上的压降 V=I*Rs 为 0.5V, PCB 上的连线压降与 0.2V 的 电压将显得不可忽视,这一点要考虑进去。

PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

 $Rs = 0.5/I_{TRIP max}$

热保护

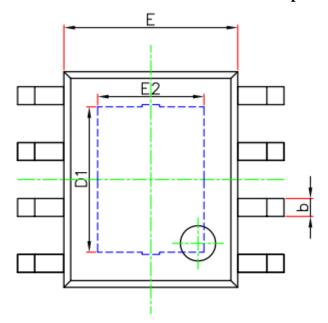

当内部电路结温超过 165℃时,过温模块开始工作,关断内部多有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 40℃。

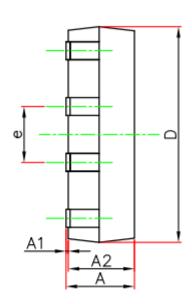
管脚定义

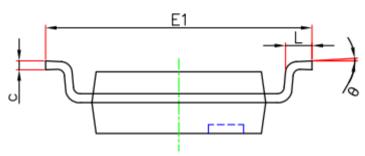
TOP VIEW

SOP8-PP

管脚列表


NAME	PIN	Pin	EXTERNAL COMPONENTS
		Description	OR CONNECTIONS
POWER .	AND GRO	OUND	
GND	1	芯片地	GND管脚和芯片裸焊盘接到电源地。
PPAD	-		
VM	5	芯片电源	芯片电源和电机电源,做好电源滤波。
IN1	3	逻辑输入	控制H桥输出状态,内置下拉电阻
IN2	2		
VREF	4	H桥参考电压输入	参考电压输入,来设定驱动峰值电流
ISEN	7	H桥 ground / Isense	H桥检流端,接检流电阻到地,若不需要限流,直接接地。
OUT1	6	H桥输出 1	H桥输出,
OUT2	8	H桥输出 2	定义正向电流为 OUT1 → OUT2





封装信息

SOP8 with exposed thermal pad

Symbol	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.300	1.700	0.051	0.067
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	3.202	3.402	0.126	0.134
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.270(BSC)		0.050((BSC)
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°